Five faculty members from the Cockrell School of Engineering at The University of Texas at Austin have been selected to receive Faculty Early Career Development (CAREER) Awards totaling $2.3 million from the National Science Foundation. Since 2012, 15 Cockrell School faculty members have received CAREER Awards.

The awards will fund engineering research that has the potential to push the wearable electronics market forward, provide statistical insight into the world’s river deltas, reduce network congestion, deliver drugs to cancer cells and develop more efficient materials for flexible electronics. This year’s recipients are Nanshu Lu, Evdokia Nikolova, Paola Passalacqua, Jeanne Stachowiak and Yaguo Wang.

“For any engineer, an NSF CAREER Award is a tremendous recognition of one’s research and ability to provide solutions to real-world challenges,” said Cockrell School Interim Dean Sharon L. Wood. “We are extremely proud of all five of the Cockrell School’s 2014 award recipients. Their early success is a testament to the school’s commitment to developing the educators, researchers and engineering leaders of the future.”

The five Cockrell School faculty members who received awards are:

Nanshu Lu, an assistant professor in the Department of Aerospace Engineering and Engineering Mechanics, was awarded for research that could lead to wearable electronics powered by the mechanical energy of body motion. The purpose of this research project is to enhance electromechanical coupling, the process that transforms a mechanical action into an electrical impulse or vice versa, at a nanoscale level. If successful, the proposed research will enable better-performing nanoelectrical systems. The ultimate goal is to help develop high-quality, multifunctional flexible electronics in forms that can conform to the surfaces of the human body for sensing, stimulating and energy harvesting. As part of the project, Lu will provide research opportunities for undergraduate and high school students.


Evdokia Nikolova, assistant professor in the Department of Electrical & Computer Engineering, received her award for research that has the potential to reduce traffic and cellphone congestion through improving the way computer networks assess risk and account for how humans make decisions under uncertainty. Her project is focused on developing new computer algorithms and tools to minimize risk in various sectors, including transportation, telecommunications and energy. Nikolova's interdisciplinary approach brings together computer science, operations research, economics and finance. Part of this research has been adapted in the MIT CarTel system, a research project addressing transportation issues, and will be incorporated into a new interdisciplinary course for undergraduate and graduate students.


Paola Passalacqua, assistant professor in the Department of Civil, Architectural and Environmental Engineering, was awarded for her research project focused on deltas, which are landforms at the mouths of rivers, where rivers flow into oceans, seas, lakes or reservoirs. There are approximately half a billion people who live on or near deltas around the world. Deltas are fragile yet resilient, capable of adapting to changing environments and recovering from damage caused by extreme events such as storms. Passalacqua and her team are developing image analysis and statistical tools that will provide detailed information about the deltas, and how humans and climate shifts affect them. These tools will be released as open source software and will be integrated into undergraduate and graduate coursework. As part of the project, a science/visual arts course aimed at high school students will be developed to address environmental problems such as coastal restoration.


Jeanne Stachowiak, assistant professor in the Department of Biomedical Engineering, was awarded for designing biomaterials that are capable of precisely recognizing diseased cells, such as cancer cells, and efficiently delivering therapeutics to them. This process has the potential to spare healthy cells from exposure, which in turn decreases patient side effects. The membrane biomaterials work by undergoing a dramatic transformation when they recognize specific markers on the surfaces of diseased cells, allowing for highly specific therapeutic delivery. Stachowiak will be incorporating a minority student outreach component to her research with the goal of generating interest in STEM careers. She will invite high school freshmen to contribute original ideas for the design of minimal cell-like systems. Students with promising ideas will be able to try them out in her lab.


Yaguo Wang, assistant professor in the Department of Mechanical Engineering, was awarded for her research on quasi-particles, called phonons, usually found in solid crystal structures and known for their major heat-carrying properties. Gaining a better understanding of phonons could lead to faster, more efficient materials for energy conversion, electronics and other devices. The goal is to better predict and measure how phonons will carry heat in different nanomaterials, such as semiconductor nanoparticles, so that designs for these materials can be improved. The project will address fundamental heat transport problems encountered in a wide variety of disciplines including thermoelectrics, semiconductor lasers and infrared detectors. The new discoveries gained from this research will be integrated into an existing undergraduate course and used to develop a new graduate course.